Millimeter/Submillimeter Observations of Young Disks

David J. Wilner Harvard-Smithsonian Center for Astrophysics

- Relevance of Millimeter Wavelengths
- Interferometry, Recent Results
 T-Tauri/HAeBe stars ~0.5-2.5 M_☉
 - resolved structure, kinematics
 - evidence for grain growth

Why Millimeter/Submillimeter?

- bulk of disk material is "cold" H₂,
 T_k ~30 K at r ~100 AU for a T-Tauri star
- dust continuum emission with low τ : dF_v= B_v(T) $\kappa_v \Sigma$ dA, i.e. millimeter flux prop. to mass weighted by temperature; $M_{disk} \sim 0.001$ 0.1 M_{\odot} (Beckwith et al. 1990)
- trace molecular species, heterodyne spectroscopy $\delta v/v > 10^6$: kinematics, chemistry
- no contrast problem with stellar photosphere

Spectral Energy Distribution

Millimeter Interferometry

- nearest star forming regions with large samples of pre-main-sequence star disks: 140 pc
 - R ~ 400 AU disk ~ 3 arcsec
 - R ~ 40 AU Kuiper Belt ~ 0.3 arcsec
 - dR ~ 1 AU gap by giant planet ~ 0.007 arcsec
- "routine" 3 to 1.3 mm dust imaging with \sim mJy sensitivity, $\theta > 0.5$ arcsec (phase fluctuations)

NMA 2.1mm Taurus survey Kitamura et al. 2002

Millimeter Interferometry: Facilities

July 26, 2004

Dust Disks and... Planets, San Diego

New Developments

- BIMA+OVRO = CARMA on higher site, 2005
- ATCA: 3 mm band deployed on 3 telescopes (5 in 2004), first access to far southern sky
- SMA: opens submillimeter 850, 450 μm atmospheric windows from Mauna Kea
- VLA: 7 mm + Pie Town link: 0.03 arcsec (sometimes); EVLA upgrades underway
- ALMA: best site, sensitivity, resolution; construction started (NA, Europe, Japan);

Atacama Large Millimeter Array

large! 64 x 12m (+12 x 7m) telescopes; 18 km \rightarrow < 0.01 arcsec at 870 μ m

ALMA at Chajnantor

early science: 2008 full operation: 2012

VertexRSI prototype antenna, Socorro, NM

July 26, 2004

Interferometer Imaging Surveys

IRAM PdBI 2.7 mm (Dutrey et al. 1996):
 33 systems, ~10 dust resolved with high s/n;
 model Σ ~r^{-p}, T ~r^{-q} → p+q ~1.5, R > 150 AU

- IRAM PdBI 1.3 mm "mini-survey" confirms
 - elongations, p.a.'s
 - low dust opacities
 - "shallow" surface density profiles
 - "large" disk sizes(Guilloteau, Dutrey)

Physical Models of Disk Structure

 replace power-law parameterizations with self-consistent radiative and hydrostatic equil.

• $\sim 10^{-8} \, \mathrm{M}_{\odot}/\mathrm{yr} \rightarrow$ irradiated, flared

D'Alessio et al. 2001

Testing Disk Structure Models

CO Line Observations

- CO most abundant tracer of "cold" H₂
- rot. lines collisionally excited, low J's thermalized
- optically thick: $T_k(r) \sim r^{-q} \rightarrow q = 0.5$ (flared)
- Keplerian rotation: v(r/D) = (GM_{*}/r)^{0.5} sin i → M_{*}

¹²CO J=2-1 IRAM PdBI ~ 15 systems, e.g. Simon et al. 2000

CO Line Observations (cont)

Towards Nebular Chemistry

- single dish surveys of a handful of disks: abundant species, e.g. HCO+, HCN, CS,... depletions 5 to >100x, photochemistry (CN, C₂H)
- imaging hard: low T_B for $\tau < 1$, Δv Doppler limited

TW Hya ATCA Wilner et al. 2003

LkCa15 OVRO Qi et al. 2003

Effects of Stellar Multiplicity

 millimeter fluxes generally lower in binaries, tidal truncation, i.e. disks within Roche lobes (Jensen et al. 1996); disks aligned, coplanar?

UZ Tau Quadruple:

- UZ Tau E
 0.03 AU asin i binary:
 circumbinary emission
 (typical of single star)
- UZ Tau W50 AU binary: weakcircumstellar emission

Example: L1551 IRS5 Binary

- deeply embedded multiple system
- new VLA 7mm:
 θ ~ 30 mas ~ 4 AU
 (Lim et al. 2004)
- 2 compact disks,
 ~ 0.05 M_☉ each,
 45 AU separation
 + other features

cf. Rodriguez et al. 1998

Disk Clearing: Gaps and Holes

- ir excess / accretion largely gone ~ few Myr (e.g. Haisch et al. 2002); more from Spitzer
- spectral "gaps": TW Hya, GM Aur, CoKu Tau 4, ...
- planet formation, disk truncation?

Bryden et al. 1999

Next Generation Millimeter Imaging

e.g. TW Hya inner hole r ~ 4 AU = 0.07 arcsec

Grain Growth and Settling

decrease dust/gas in upper layers

population of ~cm size grains in midplane

Grain Growth and Millimeter λ's

- $F_{mm} \sim \kappa_{dust} \lambda^{-2} \sim \lambda^{-(\beta+2)}$; if τ < 1, observe β , diagnostic of dust size, shape, composition, ...
- compact spherical grains $\ll \lambda$, $\beta = 2$; rocks $\gg \lambda$, $\beta = 0$
- if $F_{mm} \sim \lambda^2$, then large grains? or $\tau > 1$?

Sargent & Beckwith 1991

TW Hya Millimeter Spectrum

- spectral index from
 1.3 to 7 mm ~ 2.6
- VLA resolves 7 mm emission → low T_B, models indicate
 τ < 1, κ_{dust} ~ λ^{-0.7}
 ∴ large grains
- more resolved disks with β < 1 Natta et al. 2004

Calvet et al. 2002

Complexity in Interpretation of β

- β is an "average" for dust model
- for size power law: $n(a) \sim a^{-q}, a_{min} < a <$ a_{max} , $\beta \rightarrow 0$ for large only if q < 3
- low q: coagulation high q: fragmentation
- more constraints?

TW Hya at 3.5 cm: Dust Emission

- 3.5 cm ~ 260 μJy
- resolved by VLA, $T_R \sim 10 \text{ K, not}$ variable, ↓6 cm
- not stellar activity, not T Tauri wind
- (very) large grains, 99.9% mass frac.?

Wilner et al. 2004

Summary

- millimeter = few 0.1's mm to few 10's mm
- tracers of "cold" H₂: dust and molecules
- interferometry: typically ~ arcsec
 - dust (low τ) $\rightarrow \Sigma(r)$; mass and mass distribution
 - − ¹²CO (high τ) → T(r); other lines (low τ) → f(r, θ ,z)
- resolved kinematics: Keplerian rotation (and M_{*})
- physical models: irradiated, flared, accretion disks (e.g. TW Hya, DM Tau); tidal truncation
- dust spectra: grain growth evidence
- amazing future prospects: ALMA, EVLA